arXiv:2509.24517v1 [cs.LG] 29 Sep 2025

TRADING CARBON FOR PHYSICS

Trading Carbon for Physics:
On the Resource Efficiency of Machine Learning for
Spatio-Temporal Forecasting

Sophia N. Wilson SOHPIA.WILSON@DI.KU.DK
Department of Computer Science, University of Copenhagen, Denmark

Jens Hesselbjerg Christensen HESSELBJERG@NBI.KU.DK
Niels Bohr Institute, University of Copenhagen, Denmark

Raghavendra Selvan RAGHAV@DI.KU.DK

Department of Computer Science, University of Copenhagen, Denmark

Abstract

Development of modern deep learning methods has been driven primarily by the push for
improving model efficacy (accuracy metrics). This sole focus on efficacy has steered de-
velopment of large-scale models that require massive resources, and results in considerable
carbon footprint across the model life-cycle. In this work, we explore how physics inductive
biases can offer useful trade-offs between model efficacy and model efficiency (compute, en-
ergy, and carbon). We study a variety of models for spatio-temporal forecasting, a task
governed by physical laws and well-suited for exploring different levels of physics inductive
bias. We show that embedding physics inductive biases into the model design can yield
substantial efficiency gains while retaining or even improving efficacy for the tasks under
consideration. In addition to using standard physics-informed spatio-temporal models, we
demonstrate the usefulness of more recent models like flow matching as a general purpose
method for spatio-temporal forecasting. Our experiments show that incorporating physics
inductive biases offer a principled way to improve the efficiency and reduce the carbon
footprint of machine learning models. We argue that model efficiency, along with model
efficacy, should become a core consideration driving machine learning model development
and deployment.*

1 Introduction

Machine learning (ML) has advanced rapidly over the past decade (Sevilla et al., 2022),
driven largely by the pursuit of improving model efficacy (accuracy metrics). This narrow
focus has led to increasingly large models that require substantial computational resources
and generate significant carbon emissions across their lifecycle (Strubell et al., 2019; An-
thony et al., 2020; Luccioni et al., 2023). As models scale, efficacy gains diminish while
costs escalate, underscoring the need to move beyond accuracy as the sole measure. A more
holistic assessment must balance efficacy with efficiency, capturing not only predictive per-
formance but also compute, energy, and carbon costs (Henderson et al., 2022). This requires
exploring trade-offs and identifying strategies that strike a favourable balance, rather than
lopsided optimization.

1. Source code for the experiments in this work are available at: https://github.com/sophiawilson18/
FlowMatching.


https://github.com/sophiawilson18/FlowMatching
https://github.com/sophiawilson18/FlowMatching
https://arxiv.org/abs/2509.24517v1
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Figure 1: a: Conceptual map of modelling approaches by data availability (vertical axis) and
domain knowledge (horizontal axis). Physics-informed ML lies in the middle, combining
data-driven flexibility with physics priors. b: Test MSE versus COgeq emissions for a
data-driven NN (red squares), an unsupervised PINN (blue dots), and a semi-supervised
PINN (grey triangles). The dashed line marks the Pareto front, dominated by the S-PINN,
indicating the best accuracy-carbon trade-off. Details of the experiment are in Sec. 4.2.

Physics-informed ML offers a promising way to achieve this balance. Physics priors such
as conservations laws, symmetries, or governing equations can be embedded into model
design through, e.g., loss terms, architectural layers, or mechanisms. This combines the
flexibility of data-driven methods with the structure of domain knowledge (Fig.1-a). As
shown in Fig. 1-b, a semi-supervised physics-informed neural network (PINN) achieves the
best accuracy—carbon trade-off, outperforming both a purely data-driven neural network
(NN) and a physics-only PINN (see Sec. 4.1 for details). This example highlights how
hybrid approaches can yield superior efficiency without sacrificing efficacy.

Building on this intuition, we extend the perspective from task-specific models such as
PINNS to general-purpose architectures that embed physics inductive biases in ways that are
transferable across datasets and domains. We focus on spatio-temporal forecasting of partial
differential equations (PDE) dynamics, a setting characterised by high computational cost
and practical relevance. Operational weather and climate forecasting, for instance, requires
large-scale PDE solvers running on supercomputers multiple times per day (Lam et al.,
2023). In such contexts, even modest efficiency improvements can translate into substantial
operational carbon savings, making this domain an ideal test-bed for exploring sustainable
ML design (Van Wynsberghe, 2021). Our key contributions towards this end are:

1. Carbon-aware evaluation: We promote evaluation practices that consider both pre-
dictive accuracy and carbon cost, explicitly characterising trade-offs.

2. Characterising the accuracy—carbon trade-off: We conduct three experiments on
PDE dynamics and spatio-temporal forecasting to compare a range of models with vary-
ing levels of physics inductive bias. Our main study focuses on forecasting incompressible
shear flow, comparing U-nets (no/weak bias), flow matching (medium bias), and Fourier
neural operators (strong bias).



TRADING CARBON FOR PHYSICS

2 Background and Related Work

Revisiting the Bias-Variance Trade-
off. It is commonly understood in ML
that strong model assumptions (bias) risk
under-fitting, whereas high sensitivity to o

training data can lead to over-fitting (vari- AVA A-MMA

ance) (Kohavi et al., 1996). Striking the Sine
right balance is crucial to obtain the right ’_%W’“ AN SV J \/ \/{\ V/\\//\VAVA
class of models. —
The same trade-off can also offer a use- éw\/\/\/\/\/\/\/\/\f\
ful way to perform model selection when — +
viewed through the lens of resource con- . x PmmSfOfPhYS'Cshasedloss PINN
sumption. Typically, if domain knowledge ~ ¢ AN VA ’\ _/‘\r _/\ j\/\f\ j\
(physics-based or others) can be incorpo- = - - = rp o e
rated into models as inductive bias, it can '
reduce the reliance on training data or re-
duce prediction errors. This is illustrated
in Fig. 2 for the task of modelling a har-
monic oscillator. Models with appropriate
inductive bias (sinusoidal oscillations) per-
form better for the same number of training
data points and model parameters. See Sec. 4.1 for more details.
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Figure 2: Modelling the harmonic oscilla-
tor. Training and extrapolation predictions
when using NNs with different activation
functions: ReLU, Tanh, Sine, Snake, and
using a PINN.

The Question of Resource-Awareness. The standard metrics used to characterise the
performance of ML models primarily focus on efficacy and are untethered from efficiency
considerations. This introduces a preference for models that could offer high efficacy at
large resource costs (Bakhtiarifard et al., 2024). There are two primary streams of work
that aim to include resource-aware metrics: using composite metrics and multi-objective
optimisation.

Several composite metrics have been proposed to combine predictive performance with
resources like energy consumption or carbon footprint. (Evchenko et al., 2021) introduced
a composite metric that combines efficacy and efficiency metrics to study the influence of
resource constraints on traditional (non deep learning) ML models. Carburacy (Moro et al.,
2023) extends the idea to transformer models by jointly quantifying accuracy and carbon
emissions. More recently, Kapoor et al. (2025) proposed FcoL2, a composite metric similar
to Carburacy but extended to include the costs of data generation and hyperparameter
tuning.

Multi-objective optimisation has been primarily used in neural architecture search (NAS)
resulting in models like EfficientNet (Tan and Le, 2019). More recently, energy consump-
tion (Bakhtiarifard et al., 2024) and carbon footprint (Zhao et al., 2024) have been taken
into consideration in NAS. These methods, however, have not actively studied the influence
of physics inductive biases on the resource consumption of ML models.

Spatio-Temporal Forecasting Models. There are many model classes for the task of
spatio-temporal forecasting; each differing in the extent of physics inductive bias they use.
Fig. 3 provides a high-level overview of this span for models considered in this work.
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the dynamics beyond what is enforced by

the training data. Mild forms of inductive biases can be introduced to convolutional archi-
tectures like U-net by including circular padding to respect periodic boundaries and avoid
edge discontinuities.

Flow Matching. Recent classes of probabilistic generative models like flow matching
(FM) (Lipman et al., 2023) can be viewed as an intermediate class of models that can in-
clude some degree of inductive bias by modelling dynamics as continuous-time flows. This
formulation resonates with dynamical systems and intuitively suggests smoother trajecto-
ries. FM has been applied to spatio-temporal forecasting and other PDE dynamics tasks
(Lim et al., 2025; Li et al., 2025), with Baldan et al. (2025) further embedding PDE residuals
into the objective.

Fourier Neural Operator. The Fourier Neural Operator (FNO) (Kovachki et al., 2023)
introduces a physics prior through its Fourier-space representation, enabling the model
to capture global spectral interactions. This makes it particularly well-suited to systems
with periodicity and long-range correlations. In our spatio-temporal forecasting setting,
we adapt the FNO from its original operator-learning formulation (Lu et al., 2021) to
an autoregressive setup, where its spectral representation provides a strong inductive bias
compared to the U-net by explicitly encoding global and periodic structure.

Physics-Informed Neural Network. PINNs (Raissi et al., 2019) embed governing PDEs
directly into the training objective, thereby regularising the optimisation landscape and
guiding solutions towards physical consistency. By minimizing PDE residuals, PINNs can
even be trained without supervised data, representing the strongest inductive bias among
the models considered. Embedding conservation laws, symmetries, or governing PDEs into
the ML model development pipeline has been shown to reduce the number of trainable
parameters (Dutta et al.; Patra et al., 2024), reduce the amount of training data (Psaros
et al., 2023; Zhong et al., 2021), and accelerate convergence (Brehmer et al., 2024; Jahani-
nasab and Bijarchi, 2024).

3 Methods

Problem Setup. We consider spatio-temporal forecasting of dynamical systems in the
general setting, where the objective is to approximate the solution u(z,y,t) of a PDE given
basic inputs such as initial and boundary conditions. We frame this as an autoregressive
prediction task on a two-dimensional, uniformly spaced mesh (z,y) € {z1,z2,..., 25} X
{y1,vy2,...,yw} with discretized time steps ¢t € {t1,t2,...,t7}. At each step t; the state
is represented as a tensor ug(z,y) € REXWXC wwhere k € {1,2,.., T} indexes discrete time
steps in a trajectory of length T'. H and W are spatial dimensions and C' is the number of
physical fields (channels), such as pressure or velocity components.

To capture temporal dependencies, the model is conditioned on a finite history of length
h. The input window is denoted as ug_p+1.x(2,y) := (ug—n+1(z,y), ..., ur(x.y)). A param-
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eterised function fy is trained to predict:

up1(2,y) = fo(ub—nt1k(z,y)). (1)

During training, the loss is computed on one-step predictions. At inference, we assess long-
term stability via autoregressive rollouts, obtained by iteratively applying Eq. 1 and feeding
the model’s own predictions back as inputs.

We adapt this generalised model formulation to three problems. Each problem is then
tackled with relevant set of methods that range from being entirely data-driven to offering
relevant degrees of physics inductive biases.

1. Harmonic Oscillator. Modelling the dynamics of the harmonic oscillator only re-
quires the time variable i.e, u(t). For the harmonic oscillator, Eq. 1 reduces to ug41 =
f@(Uk;_h+1;k;), where the spatial variables (z,y) are dropped.

We assess the impact of appropriate physics-inductive biases by comparing simple feed-
forward NNs with and without biases. Specifically, these biases are introduced through
activation functions and a loss term, for modelling the damped and undamped oscillators.

2. Viscous Burgers’ Equation. Solving the viscous Burgers’ equation increases the
modelling complexity compared to the harmonic oscillator, as it has one spatial and
one temporal variable to be considered. Eq. 1 for this case is given as: wupii(x) =
fo (uk_h+1:k(x)), where only one spatial variable x is modelled along time.

We evaluate how different combinations of data and physics constraints influence predic-
tive accuracy and efficiency by comparing a supervised NN, a physics-only PINN, and a
hybrid PINN for approximating the viscous Burgers’ equation.

3. Incompressible Shear Flow. Modelling the spatio-temporal dynamics of incompress-
ible shear flow governed by Navier-Stokes equations is the most complex task considered.
It has dependence on both the spatial and temporal variables. As a result, we use Eq. 1
in its original formulation.

We evaluate several models spanning a broad spectrum of physics biases, depicted in
Fig. 3. Purely data-driven models like U-net, the moderately biased model FM, and
strongly biased neural operators are adapted for this task. The U-nets and FNOs use a
history of h = 4 states, i.e. they are trained for one-step prediction according to Eq. 1
ie., ugyi(z,y) = f@(uk,&k(:ﬂ,y)).

FM replaces direct one-step prediction with a continuous transport between consecutive
states. Instead of learning a map wug_p11.6(x,y) — urr1(z,y), FM predicts the next
state by transporting the current state forward along a learned flow. Starting from
ug(z,y), the method defines a flow trajectory ¢.(ug) over a synthetic time axis 7 €
[0,1], where the flow evolves under a time-dependent vector field v.. The one-step
forecast is then obtained as the endpoint of this flow: uxi1(z,y) = ¢1(ur(z,y)), where
O-¢r(u) = v-(pr(u)), po(u) = ug(x,y). In practice, a NN is trained to approximate this
vector field, defined by an interpolation path between consecutive states. Further FM
details including the interpolation path, vector field, and learning objective are provided
in App. A.
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4 Data and Experiments

Based on the problem formulation in Sec. 3, we set-up experiments on the three tasks
to explore the trade-off between efficacy and efficiency. Specific choices for each of the
experiments are elaborated in detail next.

4.1 Harmonic Oscillator

We use simple feed-forward NNs to model the harmonic oscillator by introducing physics
biases in two ways: through activation functions, where Sine and Snake (Ziyin et al., 2020)
have periodic biases, and through a physics-informed loss objective. ReLU and Tanh serve
as unbiased baselines.

The training data is generated from the damped harmonic oscillator, u(t) = e~%(2A cos(¢p+
wt)), where: A =1/(2cos¢), ¢ = arctan(—d/w) and w = /w3 — 62 , with added Gaus-
sian noise (4 = 0,0 = 0.3). We consider both the non-damped (6 = 0) and the damped
(6 = 0.02) regimes.

All models use the same underlying architecture (two hidden layers of width 64), trained
for 100 epochs with Adam optimizer (Kingma and Ba, 2015) using a batch size of 25.
Learning rates are 0.01 for standard networks and 0.001 for the PINN, which employs
Snake activations. Results are averaged over 10 runs. Additional details are provided in
App. B.

4.2 Viscous Burgers’ Equation

(a) (d)

In this experiment, we study models to ap-
proximate the solution of the viscous Burg- |

ers’ equation with Dirichlet boundary con-

ditions on a 2D spatio-temporal grid: 1o 05

u(x,t)

-0.5

-1.0
0.5

t

Figure 4: Target and training data for viscous
=0, Burgers’ equation. a: Target data. b: Super-
vised samples. c: PDE residuals samples. d:
Initial and boundary condition points.

ou, o,
ot " "or 012
u(z,0) = —sin(mz),

u(l,t) =u(-1,t) =0.

for x € [-1,1], t € [0,1], and with fixed viscosity (v = 0.025). The domain is discretized
with 256 spatial points and 100 time steps. We compare three models with varying physics
inductive biases, all using the same underlying architecture (comprising four hidden layers,
width 50, tanh activation functions):

e NN: a supervised NN trained with the mean-squared error (MSE) on ground-truth data,
using the loss objective: Lnn = Ldata-

e U-PINN: an unsupervised PINN trained only on physics constraints that minimizes PDE
residuals, initial conditions (IC) and boundary conditions (BC). Its loss function, Ly_piNN,
is composed of the residuals of the PDE and the deviations from the initial/boundary
conditions, expressed as: Lyu.piny = LppE + Lic + LBc.
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e S-PINN: a semi-supervised PINN where half of the training points are used for PDE resid-
uals and boundary /initial conditions, while the other half enforce a data-driven penalty
(MSE). Its loss objective is given as, Lg.pinny = LU-pINN + £NN-

The specific formulations of all three loss objectives are provided in App. C. All models
were trained using Adam optimizer followed by L-BFGS optimizer (Liu and Nocedal, 1989)
with learning rate 1073, Dataset sizes range from 10% to 5 x 10? training points for PINNs
and up to 8 x 103 for the NN. Data and code are adapted from (Khoa, 2022).

4.3 Incompressible Shear Flow

We set-up the large-scale experiment on modelling incompressible shear flow governed by
the Navier—Stokes equations, using the spatio-temporal forecasting models introduced in
Section 2.

Data. The incompreesible shear flow data is derived from The Well dataset (Ohana et al.,
2024) generated with Dedalus (Burns et al., 2020). We use a subset of the full dataset
consisting of 240 simulations spanning six PDE parameter settings with 40 initial conditions
each. Simulations are resolved at 256 x 512 with 200 time steps (At = 0.1). The data
is split by initial condition into 80/10/10 for training, validation, and testing, yielding
37,632 one-step samples for training, 4,704 for one-step inference, and 24 trajectories for
autoregressive rollout (initialised at ¢ = 0). The dataset is particularly challenging due to
the coupled evolution of four physical fields (velocity components, pressure, tracer) and its
non-linear spatiotemporal dynamics at high resolution. Further details on PDE formulation
and initialization are provided in App. D.

Models. We evaluate eight architec-

tureS Spannlng a Spectrum Of phySlCS Model(s) Physics inductive bias Strength
inductive biases, from purely data-  uNet, UNet-ON None None
. . . UNet-CP, UNet-CN-CP Circular padding Weak
deren to StI"OIlgly phySlCS—lnfOI“med, FM Continuous-time vector flow Medium
. . FNO, TFNO, UFNO Spectral layers Strong
summarised in Table 1. We use

standard U-nets (Ronneberger et al., maple 1. Overview of the eight models and the

2015) and a ConvNeXt variant (UNet- o1 tive strength of their physics inductive biases.
CN) (Liu et al., 2022) for improved

hardware-efficiency. Zero-padding serves as our no-bias baseline, while circular padding
(CP) introduces a weak prior consistent with periodic boundary conditions in the dataset.
We also include our proposed FM model. Finally, we include three variants of the Fourier
Neural Operator (FNO): a baseline model, a Tucker-factorized (TFNO) variant (Kossaifi
et al., 2023) that improves parameter effiency, and a U-shaped (UFNO) variant (Rahman
et al., 2023) designed to better capture multi-scale interactions.

Training Procedure. Across all models, we use a batch size of 16 and the AdamW
optimizer (Loshchilov and Hutter, 2019) with 10~* weight decay. For U-nets and FNOs, we
adopt the coarse-tuned learning rates reported in The Well (5-10~% and 1073, respectively).
For FM, we performed a separate coarse tuning and selected 5-1073. A linear warm-
up cosine scheduler was applied for the first three epochs. The loss optimised is MSE
averaged across fields and space. Training ran on a single Nvidia A40 GPU (< 24h) with
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early stopping (patience 6). FM was trained in low-resolution data space with subsequent
upsampling, avoiding the additional overhead of an autoencoder. Further details on FM in
low-resolution data space are provided in App. E, and complete model configurations are
listed in App. F.

4.4 Energy and Carbon Metrics

We employ Carbontracker (Anthony et al., 2020) to estimate the energy consumption and
carbon footprint during training and inference by monitoring real-time hardware power us-
age (CPU, GPU, DRAM) and adjusting for infrastructure overhead via the power usage
effectiveness. The carbon footprint is reported as carbon dioxide equivalent (COzeq) emis-
sions, which converts all greenhouse gases into an equivalent COy warming potential. It is
derived from the total energy consumed and by using the global average carbon intensity
for 2024 at 445 gCO2/kWh, ensuring fair comparisons across models (IEA, 2025).

5 Results

5.1 Harmonic Oscillator Toy Experiment

The results in Fig. 2 show that models with non-
periodic activations perform poorly outside the
training domain (extrapolation). Periodic ac- .
tivations (Sine, Snake) offer modest improve-
ments, with the model using Snake activation
function performing best. The PINN achieved
superior results in both interpolation and ex-
trapolation tasks; most notably for the damped
harmonic oscillator shown in Fig 5. It remained
stable and accurate even as prediction range in-
creased and dynamics grew more complex.

Py e

X Points for physics-based loss PINN

n on 5 10m 15n 20m 25m
t

Figure 5: Damped harmonic oscilla-
tor predictions. Mean predictions (solid
lines) with standard deviation (shaded
areas) from 10 runs. Results are shown
for the two best-performing models:
Snake and PINN.

5.2 Viscous Burgers’ Equation Experiment

For the viscous Burgers’ equation experiment, the comparison with NN, U-PINN, and S-
PINN show interesting trends. Both PINNs achieve consistently lower test losses at lower
carbon footprints compared to the supervised NN (see Fig. 1-b). Although the NN has the
lowest carbon footprint for fixed epochs and data size, achieving a given accuracy is up to 10
times more carbon-efficient with the PINNs. This S-PINN, which mixes data and physics,
dominates the Pareto front in Fig. 1-b, suggesting that combining physics and data gives
the model which balances efficacy and efficiency.

5.3 Incompressible Shear Flow Experiment

The first two simple experiments discussed above establish key insights into how physics
can affect the model performance and resource consumption for specific tasks. In the
incompressible shear flow experiment, we extend this analysis to a more complex task using
a wide spectrum of models.
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Predictive Performance. We first assess predictive performance using Pearson correla-
tion r at each step of a 20-step rollout, see Fig. 6. All eight models (see Table 1) achieve
high accuracy for the first few steps (r ~ 1), after which performance declines at different
rates. Over longer horizons, UNet-CN, UNet-CN-CP, and UFNO emerge as the strongest
performers.

Figure 7 illustrates these stability differences o
visually. UNet and UNet-CP deteriorate rapidly, \ T UNet

UNet-CN

accumulating distortions within just a few steps. £ o9 \ —— UNet-CP

: ; 2 UNet-CN-CP
The modernised variants (UNet-CN, UNet-CN- £ N~ -
CP) show marked improvements: UNet-CN cap- & *® — FNO
tures fine-scale detail but gradually disrupts _ EiNN%

0.7

large-scale dynamics, while UNet-CN-CP bet- 5 10 15 20
ter preserves both large and fine-scale structure Rollout step
P . & . Figure 6: Pearson r over 20 rollout steps.
at the cost of high-frequency artifacts. FM ex-
o o ) Values are averaged over the four fields:
hibits good temporal stability, though it tends .
velocity components, tracer, and pres-
to exaggerate some fine-scale structures. FNO
o . sure. Models labels are ordered from no
and TFNO maintain the dominant large-scale | . .
_ o L bias (top) to strong bias (bottom).
dynamics but exhibit a systematic drift toward
higher values, fail to capture fine-scale variability and eventually introduce distortions.
UFNO better recovers both large- and small-scale structures, though these gradually smooth
out over time.

Training Cost. We next relate predictive performance to training carbon footprint (Fig. 8-
a), revealing pronounced differences across models. FNO variants are the most efficient,
with carbon footprints 2.5-7.5x smaller than those of U-net variants and FM. The top-
performing models, UNet-CN, UNet-CN-CP, and UFNO reveal very different training costs:
the training carbon footprint of UFNO is less than one-fourth and one-fifth of UNet-CN’s
and UNet-CN-CP’s, respectively.

Inference Cost. To provide a more complete evaluation, we also account for inference
costs of all the trained models. This can be useful in choosing spatio-temporal forecasting
models as inference costs can dominate over training or development costs.

Figure 8-b and c contrast training emissions with one-step inference emissions. While the
FNO variants are the most carbon-efficient during training, the picture shifts at inference.
Here, the FNO variants are on average more expensive than the U-net variants. FM stands
out, with inference costs 2-5.5x higher than all other models. These discrepancies emphasise
the importance of considering both training and inference rather than focusing on a single
stage.

Padding choices further illustrate the sensitivity of emissions to architectural design.
Switching from zero to circular padding increases training emissions for both UNet and
UNet-CN. At inference, the effects diverge: circular padding slightly increases the footprint
for UNet, while significantly reducing it for UNet-CN. This highlights how even minor in-
ductive design choices — in this case enforcing circular padding to reflect periodic boundaries
— can shift the efficacy—efficiency balance.

Table 6 in App. G reports both training and inference footprints alongside run times.
While runtime and energy consumption/ carbon emissions are closely linked, they are not
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Figure 7: Example rollout predictions for one of the four fields (tracer). Target trajectory
(top row) compared with model predictions shown every third step of a 20-step rollout,
illustrating differences in long-horizon stability and fidelity. Models labels are ordered from
no bias (top) to strong bias (bottom). Results for the three other fields are provided in
Appendix G.

strictly proportional, as some operations could take longer but use less energy, and vice-
versa (Henderson et al., 2022; Bakhtiarifard et al., 2024). Additional results for these models
can be found in App. G.

6 Discussions

Our study demonstrates that physics inductive biases impact the trade-off between efficacy
and efficiency. In simple settings, such as the harmonic oscillator, adding periodic structure
or a physics-informed loss enables extrapolation beyond the training range. With viscous
Burgers’ equation, combining data with physics yields the model that dominates the Pareto
front, achieving lower test errors at lower carbon cost compared to the purely data-driven
baseline.

In the incompressible shear flow setting, we observe clear differences in how the physics
priors affect both predictive performance and carbon footprint across training and inference.
Models with strong physics inductive biases achieve the lowest training footprints, but
this comes at the expense of higher inference costs compared to U-net variants. UFNO
achieves one of the most favourable overall profiles, combining strong predictive accuracy
with a low training footprint. Its inference cost, however, remains nearly twice that of

10
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Figure 8: Predictive performance and carbon footprint. a: Predictive accuracy (Pearson
r) versus training emissions (kgCOgeq); each point represents every second step of a 20-
step rollout (lighter shades indicate earlier steps), averaged over four fields. b: Training
emissions (kgCOqeq) from a single run per model. Models are ordered from no bias (left)
to strong bias (right). c: One-step inference emissions (gCOgzeq) from three repeated runs
over the full test set; error bars indicate variability across repetitions. Note that inference
costs also include the initial model loading cost.

the best-performing U-Net variant (UNet-CN-CP). The results underscore the importance
of evaluating training and inference together. A model that trains cheaply may prove
inefficient when repeatedly deployed, while others entail higher upfront cost but amortise
more effectively in deployment. Amortising development costs across the model lifecycle is
one way to factor in these considerations (Cottier et al., 2024).

FM stands out as an outlier: while competitive in predictive performance, its reliance
on numerical integration makes inference substantially more expensive. This is in spite
of it operating on downsampled data, as the original resolution was computationally pro-
hibitive (Dao et al., 2023).

Several key points follow from these results. First, model selection cannot be based on
efficacy alone, as models with similar predictive accuracy can differ substantially in carbon
emissions. Second, once both training and inference costs are accounted for, identifying a
single “best” model becomes less straightforward, as illustrated by the incompressible shear
flow experiment. A model with a small carbon footprint during training may be unsuitable
in deployment, making carbon-aware evaluation across the full lifecycle essential.

The implications extend well beyond our test-bed. Many scientific and engineering
problems are governed by well-understood structures, and overlooking them is wasteful. At
the same time, tailoring models too closely to the specific physics can limit applicability and
can be challenging for complex systems. This motivates the development of general-purpose
models such as FNOs and FM, which allow physics priors to be incorporated more easily
while retaining flexibility across tasks. However, as demonstrated by FM, alignment with the
underlying physics does not guarantee carbon efficiency. Physics should not be incorporated
at any cost, but only where it provides clear benefits in terms of predictive performance or
carbon efficiency. While our discussion centres on physics-inductive biases, the same logic
extends to other forms of prior knowledge: any regularising bias that constrains the learning
task appropriately can potentially offer similar trade-offs between efficacy and efficiency.
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Ultimately, our results argue for a shift in mindset. Progress in ML should not be
equated with ever-larger datasets, models, and compute budgets, but rather evaluated in
terms of the value gained relative to the cost incurred. Learning everything from data while
ignoring domain knowledge reflects an abundance mindset, in which resources are treated as
unlimited. A more sustainable alternative is to exploit what we already know by embedding
this knowledge into models. Trading carbon for physics offers a principled path towards
architectures that leverage prior knowledge, reduce reliance on brute-force compute, and
achieve more favourable efficacy-efficiency trade-offs.

Limitations. This study has some limitations. First, all models were trained without ex-
tensive hyperparameter tuning. This choice emphasises architectural comparison over peak
performance, trading statistical robustness for a broader perspective on performance—carbon
trade-offs. In practice, however, hyperparameter search can dominate computational cost,
and complex models typically require many more training runs during development than
simpler baselines. Second, we restricted our study to spatio-temporal forecasting. While
this limits the scope of the contribution, the central message about taking efficiency con-
siderations into account by including appropriate inductive biases is applicable across ML
tasks. Finally, our measurements do not account for hardware specific optimisations, where
certain operations are more efficiently executed on specific accelerators. This, for instance,
could yield an advantage to deep learning models compared to PDE solvers.

7 Conclusions

The primary message in this work, backed by empirical evidence, is to increase resource-
awareness when designing ML experiments. While this can be accomplished in several
ways (Bartoldson et al., 2023), we focus on the role of physics inductive biases and illustrate
the different decisions practitioners have to consider. Through multiple experiments from
simple oscillators to complex shear flow, we showed how physics-inductive biases affect the
trade-off between predictive performance and carbon footprint.

This work advances a perspective grounded in resource-awareness and calls for a shift
in mindset. As a community, we should discourage the pursuit of marginal improvements
in performance that come from disproportionality higher resource costs. With our work we
have made the case to encourage resource-awareness by utilising existing domain knowledge
and/or other inductive biases.
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Appendix
Appendix A. Flow Matching

We condition on two consecutive states (ug, u1) := (ug, ug+1) such that the path interpolates
between current state ug and the target state u;. Following Lim et al. (2025), we adopt
their interpolation path:

pr(u|ug,ur) = N(u | (1= 7)ug + 7ur, (0hs, +0?7(1—1))1), (2)

with omin = 1073 and o = 107!, as recommended for Navier-Stokes data. The mean
interpolates linearly between ug and w1, while the variance follows a Brownian-bridge profile
(maximal halfway at 7 = 0.5, minimal at endpoints at 7 =0 and 7 = 1).

The corresponding vector field is:

( ’ ) o2 1—-27
v-(u | wg,u1) = up — ug + —
T 0, U1 1— Uo ) 21— 7)

5 > (u— ((1 —T)U0+Tul)). (3)

min

The parametric vector field vﬁ is trained to approximate v, by minimizing:

LO)=E

2
7, pr(uluo,u1), q(uo,u1) vf_(u) - U‘r(u ‘ UQ, ul)H : (4)

Here 7 ~ U[0, 1], u ~ pr(u | wp, u1), and (ug, uy) ~ q(ug, u1), where ¢ denotes the empirical
distribution of consecutive state pairs in the dataset.

In addition to the conditioning pair (ug,u1), we provide temporal context by sampling
one additional state u. € {ug_3,up_2,ux_1}, giving a maximum horizon h = 4 consistent
with FNOs and U-nets. All inputs are downsampled by a factor of 16 via average pooling,
and predictions are upsampled to the original resolution with bilinear interpolation.

During inference, given a state ug, the learned flow is simulated by numerically inte-
grating vf_ from 7 = 0 to 7 = 1. We use Euler’s method with 10 integration steps, which
produces intermediate states approximating the continuous trajectory. The final iterate is
then upsampled to the original resolution, yielding the forecast 1.

Appendix B. Toy Experiment on Harmonic Oscillator

We design a toy experiment to study the effect of physics inductive biases for extrapolation in
dynamical systems. The task is to model the trajectory of a harmonic oscillator, comparing
standard feedforward networks with variants that incorporate different inductive biases.
Specifically, we evaluate four networks with identical architecture but different activation
functions, ReLU, Tanh, Sine, and Snake (Ziyin et al., 2020), where:

Sine(z) = sin(z), Snake(z) = x + sin*(x). (5)
The Sine and Snake activations introduce oscillatory biases aligned with the dynamics of

the oscillator. In addition, we include a PINN that augments the data loss with a PDE
residual while using Snake activations.
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The governing dynamics are given by the damped harmonic oscillator:

d?u du

du
0)=1 d — =0. 7
w(©) =1, and 5 (7)

The damping ratio is defined as § = p/(2m). We adopt non-dimensionalized units with
m =1 and wy = y/k/m = 1. We consider both the undamped case (6§ = 0) and a damped
case (0 = 0.02).

Training data are sampled from ¢ € [—57,57] with Gaussian noise (1 = 0,0 = 0.3).
The purely supervised networks use 10,000 supervised samples, while the PINN uses 100
points (1%) for the physics loss. Test data are noise-free and sampled over ¢ € [57, 257] to
assess extrapolation. The points for evaluating the physics-based loss are sampled across
the entire domain.

The purely supervised networks minimize the MSE:

where u denotes the ground truth and @ the model predictions.

The PINN combines the same data term with a differential equation (DE) residual:

1 Niata 5 1 Nae dzﬁ . diL 2
LN = Laata + Lpde = 77— Y (i — @)° + I ) ( dt2j + ,ud—tj + k%) .9
i=1 de =1

Further architectural and optimisation details are given in Sec. 4.1.
Appendix C. Loss Functions Used in the viscous Burgers’ Equation
Experiment

The loss function for the purely data-driven NN, denoted Ly, is the MSE loss given by:

1 Nyata

Naata Z (i = ai)? (10)

=1

£NN = Edata =

Here u and 4 denote the ground truth and the predictions.

The U-PINN optimizes solely using the governing equations including those that describe
the boundary and initial conditions to ensure a unique solution. Its loss function, Ly_pinN,
is composed of the residuals of the PDE and the deviations from the initial and boundary
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conditions, expressed as:

Ly-pinN = Lpde + Lic + Lie (11)
N, de A~ ~ N 2
1 & /0, o, 0?1,
- 4, 2 _ 12
Npae P <8t T or "~ 0r2 (12)
1 Nic
+ (@(x,0) + sin(ra;))?
Nic .
j=1
1 Nbc
+ (a(=1,t1)% + (1, t4)%)
Nbc k=1

The S-PINN combines both data and physics losses. Its total loss function, Lg.pinN is given
by:
Ls pinN = L8N + LU-PINN = Ldata + Lpde + Lic + Lie. (13)

Appendix D. Incompressible Shear Flow Dataset

This experiment is based on data from The Well (Ohana et al., 2024), consisting of 2D
incompressible Navier—Stokes dynamics with an additional passive tracer:

o+ Vp —vV2u= —u-Vu, (14)
dis — DV?s = —u - Vs, (15)
V-u=0. (16)

Here u = (ug,uy) is the velocity components, p is pressure satisfying [p = 0, s is the
tracer, v is viscosity, and D is diffusivity. The PDE parameters are linked to Reynolds and
Schmidt numbers as ¥ = 1/Re and D = v/Sc.

The system is initialized with a horizontal shear flow:

Uz (y) = tanh <5y — Yk > , (17)
NghearW
where gy, is the vertical position of the k-th shear layer, ngpear is the number of shear layers,
and w is a width parameter that controls how sharply the velocity changes across each layer.
To introduce small perturbations in the system, the vertical velocity field v, contains
sinusoidal variations along the x-direction, localized at the shear layers. These perturbations
are given by:

. —25
i) = sintimgar) exp =2l - ). (19)

The number of oscillations is controlled by npiobs, While w influences how localized these
perturbations are around the shear layers.

The tracer field is initialized to match the shear flow, while the pressure field is initialized
to zero everywhere in the domain. Thus, the initial conditions are fully characterized by
three parameters: Nghear € {2,4}, Nbiobs € {2,3,4,5}, and w € {0.25,0.5,1.0,2.0,4.0}. An
example of the data is illustrated in Fig. 9.
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As part of preprocessing, we standardize each field using & = (z — u)/o (see Table 2).
This normalization balances the contribution of different fields by preventing those with
high variance from dominating the loss.

t=T/3 t=2T/3 t=T

t=0
0.3
w 0.0
-0.3
- »

IR PRI

>
g - - » - - .

Figure 9: Example of incompressible shear flow data. Temporal evolution of tracer (s),
pressure (p), horizontal velocity (v;) and vertical velocity (vy) fields at four time steps:
t € {0,7/3,2T/3,T}. The snapshots illustrate the coupled dynamics of the fields.

Appendix E. Flow Matching in Low-Resolution Data Space

Table 2: Field statistics. Mean and
standard deviation of raw fields, aver-
aged over all time steps.

Most prior work applies FM in latent space, with
a few exceptions (Disch et al., 2025; Baldan et al.,
2025) demonstrating its feasibility directly in data
space. We adopt this latter strategy to avoid
the additional energy and carbon costs of an en- . PV E—
coder—decoder pipeline. To make FM computa- p 118 x107°  0.074

tionally tractable, we downsample inputs by a fac- - e 13i3 oo

tor of 16, perform training and inference at low

resolution, and subsequently upsample to the original resolution. This design inevitably
encode a trade-off between efficacy and efficiency: while operating in low-resolution data
space suppresses fine-scale dynamics and may introduce artifacts, it delivers substantial
efficiency gains, reducing training and inference time by orders of magnitude.

Field Mean Std

Appendix F. Model Configurations

Model configurations are adapted from prior work. U-nets, FNO, and TFNO follow Ohana
et al. (2024), UFNO follows Rahman et al. (2023), and FM is adapted from Lim et al.
(2025), with some adjustments to match our setting (including operating directly in data
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Table 3: Model parameters.

Model #Params
UNet 17.5M
UNet-CN 18.6M
UNet-CP 17.5M
UNet-CN-CP 18.6M
FM 8.6M
FNO 19.0M
TFNO 19.3M
UFNO 18.8M

space). In line with The Well (Ohana et al., 2024), U-nets and FNO variants are scaled
to ~17-20M parameters, while FM is smaller (~8.5M). Table 3 provides an overview of

parameter counts, with detailed configurations summarized in Table 4 (U-nets and FNOs)
and Table 5 (FM).

Table 4: U-nets and FNOs model configurations.

Model Filter size/modes Init dim Blocks/stage Up/down Bottleneck
UNet, UNet-CP 3 48 1 4 1
UNet-CN, UNet-CN-CP 7 42 2 4 1
FNO, TFNO 16 128 4 — —
UFNO 8,12, 16 128 1 3 1

Table 5: FM model configuration. The FM model operates in low-resolution data space

and is built from transformer stacks with learned positional, timestamp, and distance em-
beddings.

Model Resolution Init dim Depth Bottleneck Heads

FM 16 x 32 256 3 4 8

Appendix G. Additional Results

This appendix presents supplementary plots that support the findings in the main text.
Table 6 reports both the training and inference emissions alongside run times.

Training Inference (one-step)
Model COjzeq (kg) Time (h) COzeq (g) Time (min)
UNet 2.72 12.7 3.68 4+ 0.03 1.0
UNet-CN 4.71 15.9 7.77 £ 0.05 1.9
UNet-CP 3.81 14.2 4.06 + 0.05 1.0
UNet-CN-CP 5.89 20.9 4.87 £ 0.02 1.2
FM 3.31 14.0 23.54 +0.13 4.6
FNO 0.80 4.0 7.87 £ 0.94 2.0
TFNO 1.09 5.3 7.21 +£0.12 1.8
UFNO 1.12 3.6 9.00 £+ 0.88 2.4

Table 6: Carbon footprint during training and inference. Reported CO2eq emissions and
runtime for all models, measured with CarbonTracker. Inference results correspond to one-
step forecasts over the full test set (4,704 samples) and includes the initial model loading
cost. Each inference experiment was repeated three times; COqeq is reported as mean and
standard deviation, and runtimes as mean values.
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Fig.10-a reports model performance using the variance-scaled root mean squared error
(VRMSE), which normalises prediction error by the variance of the ground truth to account
for scale differences across fields:

u — ul? 1/2
VRMSE(u, @) = (Uu<|_<u>|2‘>>+€> : (19)

where (-) denotes spatial averaging, u the ground truth, @ the prediction, and € = 1078 a
small constant for stability. The VRMSE measures errors relative to the natural variability
of the data, with VRMSE(y, (y)) ~ 1 implying that values greater than one indicate pre-
diction errors larger than typical fluctuations. The results follow the same overall trends as
in Fig.8-a, where performance was measured with the Pearson correlation coefficient.

Figure 10-b reports the inference carbon footprint for 24 autoregressive rollouts of 50
steps each. Compared to one-step inference over the full test set (4,704 samples), the
rollout costs tend to average out across models, since the fixed overhead of model loading
constitutes a larger share of the total cost. Flow matching remains an outlier, standing out
as the most expensive model during inference.
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Figure 10: Predictive performance and rollout carbon footprint. a: VRMSE vs. training
carbon footprint. Each point shows every second step of a 20-step rollout, averaged across
the four fields (lighter shades indicate earlier steps). b: Carbon footprint of inference during
rollouts. Reported COseq emissions for 24 autoregressive rollouts of 50 steps. Inference costs
include the initial model loading cost. Models are ordered from no bias (left) to strong bias
(right).

Figs. 11, 12, and 13 provide rollout prediction examples for the three physical fields not
shown in the main text (pressure fields and the two velocity components). The observations
made for the tracer field in the main text extend to these additional fields.
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Figure 11: Example of rollout predictions for pressure field. Target trajectory (top row)
compared with model predictions shown every third step of a 20-step rollout. Models labels
are ordered from no bias (top) to strong bias (bottom).
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Figure 12: Example of rollout predictions for horizontal velocity field. Target trajectory
(top row) compared with model predictions shown every third step of a 20-step rollout.
Models labels are ordered from no bias (top) to strong bias (bottom).
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Figure 13: Example of rollout predictions for vertical velocity field. Target trajectory (top
row) compared with model predictions shown every third step of a 20-step rollout. Models
labels are ordered from no bias (top) to strong bias (bottom).
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